Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 21(4): e3002068, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37011096

RESUMO

Given the requisite cost associated with observing species interactions, ecologists often reuse species interaction networks created by different sets of researchers to test their hypotheses regarding how ecological processes drive network topology. Yet, topological properties identified across these networks may not be sufficiently attributable to ecological processes alone as often assumed. Instead, much of the totality of topological differences between networks-topological heterogeneity-could be due to variations in research designs and approaches that different researchers use to create each species interaction network. To evaluate the degree to which this topological heterogeneity is present in available ecological networks, we first compared the amount of topological heterogeneity across 723 species interaction networks created by different sets of researchers with the amount quantified from non-ecological networks known to be constructed following more consistent approaches. Then, to further test whether the topological heterogeneity was due to differences in study designs, and not only to inherent variation within ecological networks, we compared the amount of topological heterogeneity between species interaction networks created by the same sets of researchers (i.e., networks from the same publication) with the amount quantified between networks that were each from a unique publication source. We found that species interaction networks are highly topologically heterogeneous: while species interaction networks from the same publication are much more topologically similar to each other than interaction networks that are from a unique publication, they still show at least twice as much heterogeneity as any category of non-ecological networks that we tested. Altogether, our findings suggest that extra care is necessary to effectively analyze species interaction networks created by different researchers, perhaps by controlling for the publication source of each network.

2.
Ecol Lett ; 25(8): 1914-1916, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35610664

RESUMO

Luna et al. (2022) concluded that the environment contributes to explaining specialisation in open plant-pollinator networks. When reproducing their study, we instead found that network size alone largely explained the variation in their specialisation metrics. Thus, we question whether empirical network specialisation is driven by the environment.


Assuntos
Plantas , Polinização , Ecossistema
3.
Proc Biol Sci ; 288(1949): 20201889, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33906397

RESUMO

Network ecology is an emerging field that allows researchers to conceptualize and analyse ecological networks and their dynamics. Here, we focus on the dynamics of ecological networks in response to environmental changes. Specifically, we formalize how network topologies constrain the dynamics of ecological systems into a unifying framework in network ecology that we refer to as the 'ecological network dynamics framework'. This framework stresses that the interplay between species interaction networks and the spatial layout of habitat patches is key to identifying which network properties (number and weights of nodes and links) and trade-offs among them are needed to maintain species interactions in dynamic landscapes. We conclude that to be functional, ecological networks should be scaled according to species dispersal abilities in response to landscape heterogeneity. Determining how such effective ecological networks change through space and time can help reveal their complex dynamics in a changing world.


Assuntos
Ecologia , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...